Python-ticks
Roy Lv7

整理和维护经常会用到的python技巧

  1. Upack

当需要从某个可迭代对象中分决出N个元素,但是这个可迭代对象的长度可能超过N,这会导致“分解的值过多(too many values to unpack)”的异常

解决方案

使用python的“*表达式”可以解决这个问题。

1
2
3
def drop_first_last(grades):
first,*middle,last = grades
return avg(middle)

在分解任意长度的可迭代对象时特别好用

1
2
3
4
5
6
7
8
9
10
11
12
13
14
records =[
('foo',1,3),
('bar','hello'),
('foo',3,4),
]
def do_foo(x,y):
print('foo',x,y)
def do_bar(s):
print('bar',s)
for tag,*args in records:
if tag=='foo':
do_foo(*args)
elif tag=='bar':
do_bar(*args)
  1. 步进切片
    从列表中创建一定间隔的新列表
1
2
3
4
5
6
7
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::2]
[0, 2, 4, 6, 8, 10]
>>> a[::3]
[0, 3, 6, 9]
>>> a[2:8:2]
[2, 4, 6]

list slice with step (a[start:end:step])

  1. 生成倒叙的list
1
2
3
4
5
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::-1]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> a[::-2]
[10, 8, 6, 4, 2, 0]
  1. 命名切片的调用
    Naming slices (slice(start,end,step))

    1
    2
    3
    4
    5
    6
    >>> a = [0, 1, 2, 3, 4, 5]
    >>> LASTTHREE = slice(-3, None)
    >>> LASTTHREE
    slice(-3, None, None)
    >>> a[LASTTHREE]
    [3, 4, 5]
  2. 遍历列表的索引和值
    Iterating over list index and value pairs (enumerate)

1
2
3
4
5
6
7
>>> a = ['Hello', 'world', '!']
>>> for i, x in enumerate(a):
... print '{}: {}'.format(i, x)
...
0: Hello
1: world
2: !
  1. 遍历字典
    dict.iteritems
1
2
3
4
5
6
7
8
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
>>> for k, v in m.iteritems():
... print '{}: {}'.format(k, v)
...
a: 1
c: 3
b: 2
d: 4
  1. 压缩和解压缩列表
    Zipping and unzipping lists

    1
    2
    3
    4
    5
    6
    7
    >>> a = [1, 2, 3]
    >>> b = ['a', 'b', 'c']
    >>> z = zip(a, b)
    >>> z
    [(1, 'a'), (2, 'b'), (3, 'c')]
    >>> zip(*z)
    [(1, 2, 3), ('a', 'b', 'c')]
  2. 使用zip分组相邻的列表项
    Grouping adjacent list items using zip

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

>>> # Using iterators
>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]


>>> # Using slices
>>> from itertools import islice
>>> group_adjacent = lambda a, k: zip(*(islice(a, i, None, k) for i in range(k)))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]
  1. 使用滑动窗口迭代器
    Sliding windows (nn -grams) using zip and iterators
1
2
3
4
5
6
7
8
9
10
11
12
>>> from itertools import islice
>>> def n_grams(a, n):
... z = (islice(a, i, None) for i in range(n))
... return zip(*z)
...
>>> a = [1, 2, 3, 4, 5, 6]
>>> n_grams(a, 3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
>>> n_grams(a, 2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
>>> n_grams(a, 4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]
  1. 字典的键值反转
    Inverting a dictionary using zip

    1
    2
    3
    4
    5
    6
    7
    8
    >>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
    >>> m.items()
    [('a', 1), ('c', 3), ('b', 2), ('d', 4)]
    >>> zip(m.values(), m.keys())
    [(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]
    >>> mi = dict(zip(m.values(), m.keys()))
    >>> mi
    {1: 'a', 2: 'b', 3: 'c', 4: 'd'}
  2. 展开列表
    Flattening lists

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> a = [[1, 2], [3, 4], [5, 6]]
>>> list(itertools.chain.from_iterable(a))
[1, 2, 3, 4, 5, 6]
>>> sum(a, [])
[1, 2, 3, 4, 5, 6]
>>> [x for l in a for x in l]
[1, 2, 3, 4, 5, 6]
>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> [x for l1 in a for l2 in l1 for x in l2]
[1, 2, 3, 4, 5, 6, 7, 8]
>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]
>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]
>>> flatten(a)
[1, 2, 3, 4, 5, 6, 7, 8]
  1. 生成器表达式
    Generator expressions
1
2
3
4
5
6
7
8
9
10
11
12
13
>>> g = (x ** 2 for x in xrange(10))
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> sum(x ** 3 for x in xrange(10))
2025
>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)
408
  1. 字典推导式
    Dicitonary comprehensions
1
2
3
4
5
6
>>> m = {x: x ** 2 for x in range(5)}
>>> m
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
>>> m = {x: 'A' + str(x) for x in range(10)}
>>> m
{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}
  1. 使用字典推到式反转字典
    Inverting a dictionary using a dictionary comprehension
1
2
3
4
5
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
>>> m
{'d': 4, 'a': 1, 'b': 2, 'c': 3}
>>> {v: k for k, v in m.items()}
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
  1. 命名元组的调用
    Named tuples (collections.namedtuple)
1
2
3
4
5
6
7
8
>>> Point = collections.namedtuple('Point', ['x', 'y'])
>>> p = Point(x=1.0, y=2.0)
>>> p
Point(x=1.0, y=2.0)
>>> p.x
1.0
>>> p.y
2.0
  1. 从命名元组继承
    inheriting from named tuples
1
2
3
4
5
6
7
8
>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):
...
__slots__ = ()
...
def __add__(self, other):
...
return Point(x=self.x + other.x, y=self.y + other.y)
>>> p = Point(x=1.0, y=2.0)
>>> q = Point(x=2.0, y=3.0)
>>> p + q
Point(x=3.0, y=5.0)
  1. 集合的使用
    sets and set operations
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
>>> A = {1, 2, 3, 3}
>>> A
set([1, 2, 3])
>>> B = {3, 4, 5, 6, 7}
>>> B
set([3, 4, 5, 6, 7])
>>> A | B
set([1, 2, 3, 4, 5, 6, 7])
>>> A & B
set([3])
>>> A - B
set([1, 2])
>>> B - A
set([4, 5, 6, 7])
>>> A ^ B
set([1, 2, 4, 5, 6, 7])
>>> (A ^ B) == ((A - B) | (B - A))
True
  1. 集合的操作
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
>>> A = collections.Counter([1, 2, 2])
>>> B = collections.Counter([2, 2, 3])
>>> A
Counter({2: 2, 1: 1})
>>> B
Counter({2: 2, 3: 1})
>>> A | B
Counter({2: 2, 1: 1, 3: 1})
>>> A & B
Counter({2: 2})
>>> A + B
Counter({2: 4, 1: 1, 3: 1})
>>> A - B
Counter({1: 1})
>>> B - A
Counter({3: 1})
  1. 可迭代对象的计数
1
2
3
4
5
6
7
>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])
>>> A
Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
>>> A.most_common(1)
[(3, 4)]
>>> A.most_common(3)
[(3, 4), (1, 2), (2, 2)]
  1. 双端队列
    double-ended queue
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
>>> Q = collections.deque()
>>> Q.append(1)
>>> Q.appendleft(2)
>>> Q.extend([3, 4])
>>> Q.extendleft([5, 6])
>>> Q
deque([6, 5, 2, 1, 3, 4])
>>> Q.pop()
4
>>> Q.popleft()
6
>>> Q
deque([5, 2, 1, 3])
>>> Q.rotate(3)
>>> Q
deque([2, 1, 3, 5])
>>> Q.rotate(-3)
>>> Q
deque([5, 2, 1, 3])
  1. 最大长度双端队列
    double-ended queue with maximum length
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> last_three = collections.deque(maxlen=3)
>>> for i in xrange(10):
... last_three.append(i)
... print ', '.join(str(x) for x in last_three)
...
0
0, 1
0, 1, 2
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
5, 6, 7
6, 7, 8
7, 8, 9
  1. 有序字典
    ordered dictionaries
1
2
3
4
5
6
7
8
9
>>> m = dict((str(x), x) for x in range(10))
>>> print ', '.join(m.keys())
1, 0, 3, 2, 5, 4, 7, 6, 9, 8
>>> m = collections.OrderedDict((str(x), x) for x in range(10))
>>> print ', '.join(m.keys())
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))
>>> print ', '.join(m.keys())
10, 9, 8, 7, 6, 5, 4, 3, 2, 1
  1. 将对象映射到唯一的计数数字
    mapping objects to unique counting numbers

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    >>> import itertools, collections
    >>> value_to_numeric_map = collections.defaultdict(itertools.count().next)
    >>> value_to_numeric_map['a']
    0
    >>> value_to_numeric_map['b']
    1
    >>> value_to_numeric_map['c']
    2
    >>> value_to_numeric_map['a']
    0
    >>> value_to_numeric_map['b']
    1
  2. 最大和最小元素
    largest and smallest elements(heapq.nlargest and heapq.nsmallest)

    1
    2
    3
    4
    5
    >>> a = [random.randint(0, 100) for __ in xrange(100)]
    >>> heapq.nsmallest(5, a)
    [3, 3, 5, 6, 8]
    >>> heapq.nlargest(5, a)
    [100, 100, 99, 98, 98]
  3. 笛卡尔积
    cartesian products

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    >>> for p in itertools.product([1, 2, 3], [4, 5]):
    (1, 4)
    (1, 5)
    (2, 4)
    (2, 5)
    (3, 4)
    (3, 5)
    >>> for p in itertools.product([0, 1], repeat=4):
    ... print ''.join(str(x) for x in p)
    ...
    0000
    0001
    0010
    0011
    0100
    0101
    0110
    0111
    1000
    1001
    1010
    1011
    1100
    1101
    1110
    1111
  4. 组合和替换组合
    combinations and combinations with replacemnet

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):
... print ''.join(str(x) for x in c)
...
123
124
125
134
135
145
234
235
245
345
>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):
... print ''.join(str(x) for x in c)
...
11
12
13
22
23
33
  1. 排列交换
    Permurtations
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
>>> for p in itertools.permutations([1, 2, 3, 4]):
... print ''.join(str(x) for x in p)
...
1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321
  1. 链式迭代
    chaining iterables
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    >>> a = [1, 2, 3, 4]
    >>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):
    ... print p
    ...
    (1, 2)
    (1, 3)
    (1, 4)
    (2, 3)
    (2, 4)
    (3, 4)
    (1, 2, 3)
    (1, 2, 4)
    (1, 3, 4)
    (2, 3, 4)
    >>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))
    ... print subset
    ...
    ()
    (1,)
    (2,)
    (3,)
    (4,)
    (1, 2)
    (1, 3)
    (1, 4)
    (2, 3)
    (2, 4)
    (3, 4)
    (1, 2, 3)
    (1, 2, 4)
    (1, 3, 4)
    (2, 3, 4)
    (1, 2, 3, 4)
  1. 按给定键进行分组
    grouping rows by a given key
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
>>> from operator import itemgetter
>>> import itertools
>>> with open('contactlenses.csv', 'r') as infile:
... data = [line.strip().split(',') for line in infile]
...
>>> data = data[1:]
>>> def print_data(rows):
... print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)
...

>>> print_data(data)
young myope no reduced none
young myope no normal soft
young myope yes reduced none
young myope yes normal hard
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-presbyopic myope no reduced none
pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope no normal soft
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic myope yes normal hard
presbyopic hypermetrope no reduced none
presbyopic hypermetrope no normal soft
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none

>>> data.sort(key=itemgetter(-1))
>>> for value, group in itertools.groupby(data, lambda r: r[-1]):
... print '-----------'
... print 'Group: ' + value
... print_data(group)
...
-----------
Group: hard
young myope yes normal hard
young hypermetrope yes normal hard
pre-presbyopic myope yes normal hard
presbyopic myope yes normal hard
-----------
Group: none
young myope no reduced none
young myope yes reduced none
young hypermetrope no reduced none
young hypermetrope yes reduced none
pre-presbyopic myope no reduced none
pre-presbyopic myope yes reduced none
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic hypermetrope no reduced none
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none
-----------
Group: soft
young myope no normal soft
young hypermetrope no normal soft
pre-presbyopic myope no normal soft
pre-presbyopic hypermetrope no normal soft
presbyopic hypermetrope no normal soft
  1. 在任意目录中启动http服务器

start a static http server in any directory

1
python -m SimpleHTTPServer 5000
  • 本文标题:Python-ticks
  • 本文作者:Roy
  • 创建时间:2019-12-25 08:53:55
  • 本文链接:https://www.yrzdm.com/2019/12/25/decomposing-elements-from-iteratable-objects-md/
  • 版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!